22/11/2021

360-Degree Gaze Estimation in the Wild Using Multiple Zoom Scales

Ashesh Ashesh, Chu-Song Chen, Hsuan-Tien Lin

Keywords: 3D Gaze estimation, Gaze estimation, Gaze estimation in the wild, multi scale, 360 degree gaze estimation

Abstract: Gaze estimation involves predicting where the person is looking at within an image or video. Technically, the gaze information can be inferred from two different magnification levels: face orientation and eye orientation. The inference is not always feasible for gaze estimation in the wild, given the lack of clear eye patches in conditions like extreme left/right gazes or occlusions. In this work, we design a model that mimics humans' ability to estimate the gaze by aggregating from focused looks, each at a different magnification level of the face area. The model avoids the need to extract clear eye patches and at the same time addresses another important issue of face-scale variation for gaze estimation in the wild. We further extend the model to handle the challenging task of 360-degree gaze estimation by encoding the backward gazes in the polar representation along with a robust averaging scheme. Experiment results on the ETH-XGaze dataset, which does not contain scale-varying faces, demonstrate the model's effectiveness to assimilate information from multiple scales. For other benchmark datasets with many scale-varying faces (Gaze360 and RT-GENE), the proposed model achieves state-of-the-art performance for gaze estimation when using either images or videos. Our code and pretrained models can be accessed at https://github.com/ashesh-0/MultiZoomGaze.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers