22/11/2021

Visual Keyword Spotting with Attention

Prajwal K R, Liliane Momeni, Triantafyllos Afouras, Andrew Zisserman

Keywords: visual keyword spotting, lip reading

Abstract: In this paper, we consider the task of spotting spoken keywords in silent video sequences -- also known as visual keyword spotting. To this end, we investigate Transformer-based models that ingest two streams, a visual encoding of the video and a phonetic encoding of the keyword, and output the temporal location of the keyword if present. Our contributions are as follows: (1) We propose a novel architecture, the Transpotter, that uses full cross-modal attention between the visual and phonetic streams; (2) We show through extensive evaluations that our model outperforms the prior state-of-the-art visual keyword spotting and lip reading methods on the challenging LRW, LRS2, LRS3 datasets by a large margin; (3) We demonstrate the ability of our model to spot words under the extreme conditions of isolated mouthings in sign language videos.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers