07/09/2020

Revisiting Temporal Modeling for Video Super-resolution

Takashi Isobe, Fang Zhu, Shengjin Wang

Keywords: Video Super-Resolution, Recurrent Neural Network, Temporal Modeling

Abstract: Video super-resolution plays an important role in surveillance video analysis and ultra-high-definition video display, which has drawn much attention in both the research and industrial communities. Although many deep learning-based VSR methods have been proposed, it is hard to directly compare these methods since the different loss functions and training datasets have a significant impact on the super-resolution results. In this work, we carefully study and compare three temporal modeling methods (2D CNN with early fusion, 3D CNN with slow fusion and Recurrent Neural Network) for video super-resolution. We also propose a novel Recurrent Residual Network (RRN) for efficient video super-resolution, where residual learning is utilized to stabilize the training of RNN and meanwhile to boost the super-resolution performance. Extensive experiments show that the proposed RRN is highly computational efficiency and produces temporal consistent VSR results with finer details than other temporal modeling methods. Besides, the proposed method achieves state-of-the-art results on several widely used benchmarks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers