18/07/2021

Boosting for Online Convex Optimization

Elad Hazan, Karan Singh

Keywords: Theory, Online Learning Theory

Abstract: We consider the decision-making framework of online convex optimization with a very large number of experts. This setting is ubiquitous in contextual and reinforcement learning problems, where the size of the policy class renders enumeration and search within the policy class infeasible. Instead, we consider generalizing the methodology of online boosting. We define a weak learning algorithm as a mechanism that guarantees multiplicatively approximate regret against a base class of experts. In this access model, we give an efficient boosting algorithm that guarantees near-optimal regret against the convex hull of the base class. We consider both full and partial (a.k.a. bandit) information feedback models. We also give an analogous efficient boosting algorithm for the i.i.d. statistical setting. Our results simultaneously generalize online boosting and gradient boosting guarantees to contextual learning model, online convex optimization and bandit linear optimization settings.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers