18/07/2021

Model-Based Reinforcement Learning via Latent-Space Collocation

Oleg Rybkin, Chuning Zhu, Anusha Nagabandi, Kostas Daniilidis, Igor Mordatch, Sergey Levine

Keywords: Reinforcement Learning and Planning, Deep RL

Abstract: The ability to plan into the future while utilizing only raw high-dimensional observations, such as images, can provide autonomous agents with broad and general capabilities. However, realistic tasks require performing temporally extended reasoning, and cannot be solved with only myopic, short-sighted planning. Recent work in model-based reinforcement learning (RL) has shown impressive results on tasks that require only short-horizon reasoning. In this work, we study how the long-horizon planning abilities can be improved with an algorithm that optimizes over sequences of states, rather than actions, which allows better credit assignment. To achieve this, we draw on the idea of collocation and adapt it to the image-based setting by leveraging probabilistic latent variable models, resulting in an algorithm that optimizes trajectories over latent variables. Our latent collocation method (LatCo) provides a general and effective visual planning approach, and significantly outperforms prior model-based approaches on challenging visual control tasks with sparse rewards and long-term goals. See the videos on the supplementary website \url{https://sites.google.com/view/latco-mbrl/.}

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers