18/07/2021

On Robust Mean Estimation under Coordinate-level Corruption

Zifan Liu, Jongho Park, Theo Rekatsinas, Christos Tzamos

Keywords: Theory, Computational Learning Theory

Abstract: We study the problem of robust mean estimation and introduce a novel Hamming distance-based measure of distribution shift for coordinate-level corruptions. We show that this measure yields adversary models that capture more realistic corruptions than those used in prior works, and present an information-theoretic analysis of robust mean estimation in these settings. We show that for structured distributions, methods that leverage the structure yield information theoretically more accurate mean estimation. We also focus on practical algorithms for robust mean estimation and study when data cleaning-inspired approaches that first fix corruptions in the input data and then perform robust mean estimation can match the information theoretic bounds of our analysis. We finally demonstrate experimentally that this two-step approach outperforms structure-agnostic robust estimation and provides accurate mean estimation even for high-magnitude corruption.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers