18/07/2021

Unsupervised Part Representation by Flow Capsules

Sara Sabour Rouh Aghdam, Andrea Tagliasacchi, Soroosh Yazdani, Geoffrey Hinton, David Fleet

Keywords: Deep Learning, Embedding and Representation learning

Abstract: Capsule networks aim to parse images into a hierarchy of objects, parts and relations. While promising, they remain limited by an inability to learn effective low level part descriptions. To address this issue we propose a way to learn primary capsule encoders that detect atomic parts from a single image. During training we exploit motion as a powerful perceptual cue for part definition, with an expressive decoder for part generation within a layered image model with occlusion. Experiments demonstrate robust part discovery in the presence of multiple objects, cluttered backgrounds, and occlusion. The learned part decoder is shown to infer the underlying shape masks, effectively filling in occluded regions of the detected shapes. We evaluate FlowCapsules on unsupervised part segmentation and unsupervised image classification.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers