14/06/2020

AdaCoSeg: Adaptive Shape Co-Segmentation With Group Consistency Loss

Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Li Yi, Leonidas J. Guibas, Hao Zhang

Keywords: adaptive co-segmentation, group consistency loss, low rank, weakly surpervised training

Abstract: We introduce AdaCoSeg, a deep neural network architecture for adaptive co-segmentation of a set of 3D shapes represented as point clouds. Differently from the familiar single-instance segmentation problem, co-segmentation is intrinsically contextual: how a shape is segmented can vary depending on the set it is in. Hence, our network features an adaptive learning module to produce a consistent shape segmentation which adapts to a set. Specifically, given an input set of unsegmented shapes, we first employ an offline pre-trained part prior network to propose per-shape parts. Then the co-segmentation network iteratively and jointly optimizes the part labelings across the set subjected to a novel group consistency loss defined by matrix ranks. While the part prior network can be trained with noisy and inconsistently segmented shapes, the final output of AdaSeg is a consistent part labeling for the input set, with each shape segmented into up to (a user-specified) K parts. Overall, our method is weakly supervised, producing segmentations tailored to the test set, without consistent ground-truth segmentations. We show qualitative and quantitative results from AdaSeg and evaluate it via ablation studies and comparisons to state-of-the-art co-segmentation methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers