18/07/2021

End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series

Syama Sundar Yadav Rangapuram, Lucien D Werner, Konstantinos Benidis, Pedro Mercado, Jan Gasthaus, Tim Januschowski

Keywords: Algorithms, Time Series and Sequences

Abstract: This paper presents a novel approach for hierarchical time series forecasting that produces coherent, probabilistic forecasts without requiring any explicit post-processing reconciliation. Unlike the state-of-the-art, the proposed method simultaneously learns from all time series in the hierarchy and incorporates the reconciliation step into a single trainable model. This is achieved by applying the reparameterization trick and casting reconciliation as an optimization problem with a closed-form solution. These model features make end-to-end learning of hierarchical forecasts possible, while accomplishing the challenging task of generating forecasts that are both probabilistic and coherent. Importantly, our approach also accommodates general aggregation constraints including grouped and temporal hierarchies. An extensive empirical evaluation on real-world hierarchical datasets demonstrates the advantages of the proposed approach over the state-of-the-art.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers