02/02/2021

Online 3D Bin Packing with Constrained Deep Reinforcement Learning

Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, Kai Xu

Keywords:

Abstract: We solve a challenging yet practically useful variant of 3D Bin Packing Problem (3D-BPP). In our problem, the agent has limited information about the items to be packed into a single bin, and an item must be packed immediately after its arrival without buffering or readjusting. The item's placement also subjects to the constraints of order dependence and physical stability. We formulate this online 3D-BPP as a constrained Markov decision process (CMDP). To solve the problem, we propose an effective and easy-to-implement constrained deep reinforcement learning (DRL) method under the actor-critic framework. In particular, we introduce a prediction-and-projection scheme: The agent first predicts a feasibility mask for the placement actions as an auxiliary task and then uses the mask to modulate the action probabilities output by the actor during training. Such supervision and projection facilitate the agent to learn feasible policies very efficiently. Our method can be easily extended to handle lookahead items, multi-bin packing, and item re-orienting. We have conducted extensive evaluation showing that the learned policy significantly outperforms the state-of-the-art methods. A preliminary user study even suggests that our method might attain a human-level performance.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949077
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers