02/02/2021

Shuffling Recurrent Neural Networks

Michael Rotman, Lior Wolf

Keywords:

Abstract: We propose a novel recurrent neural network model, where the hidden state hₜ is obtained by permuting the vector elements of the previous hidden state hₜ₋₁ and adding the output of a learned function β(xₜ) of the input xₜ at time t. In our model, the prediction is given by a second learned function, which is applied to the hidden state s(hₜ). The method is easy to implement, extremely efficient, and does not suffer from vanishing nor exploding gradients. In an extensive set of experiments, the method shows competitive results, in comparison to the leading literature baselines. We share our implementation at https://github.com/rotmanmi/SRNN.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948774
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers