02/02/2021

We Can Explain Your Research in Layman's Terms: Towards Automating Science Journalism at Scale

Rumen Dangovski, Michelle Shen, Dawson Byrd, Li Jing, Desislava Tsvetkova, Preslav Nakov, Marin Soljačić

Keywords:

Abstract: We propose to study Automating Science Journalism (ASJ), the process of producing a layman's terms summary of a research article, as a new benchmark for long neural abstractive summarization and story generation. Automating science journalism is a challenging task as it requires paraphrasing complex scientific concepts to be grasped by the general public. Thus, we create a specialized dataset that contains scientific papers and their Science Daily press releases. We demonstrate numerous sequence to sequence (seq2seq) applications using Science Daily with the aim of facilitating further research on language generation, which requires extreme paraphrasing and coping with long research articles. We further improve the quality of the press releases using co-training with scientific abstracts of sources or partitioned press releases. Finally, we apply evaluation measures beyond ROUGE and we demonstrate improved performance for our method over strong baselines, which we further confirm by quantitative and qualitative evaluation.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948930
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers