02/02/2021

Towards Topic-Aware Slide Generation For Academic Papers With Unsupervised Mutual Learning

Da-Wei Li, Danqing Huang, Tingting Ma, Chin-Yew Lin

Keywords:

Abstract: Slides are commonly used to present information and tell stories. In academic and research communities, slides are typically used to summarize findings in accepted papers for presentation in meetings and conferences. These slides for academic papers usually contain common and essential topics such as major contributions, model design, experiment details and future work. In this paper, we aim to automatically generate slides for academic papers. We first conducted an in-depth analysis of how humans create slides. We then mined frequently used slide topics. Given a topic, our approach extracts relevant sentences in the paper to provide the draft slides. Due to the lack of labeling data, we integrate prior knowledge of ground truth sentences into a log-linear model to create an initial pseudo-target distribution. Two sentence extractors are learned collaboratively and bootstrap the performance of each other. Evaluation results on a labeled test set show that our model can extract more relevant sentences than baseline methods. Human evaluation also shows slides generated by our model can serve as a good basis for preparing the final presentations.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949271
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers