02/02/2021

Guiding Non-Autoregressive Neural Machine Translation Decoding with Reordering Information

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou

Keywords:

Abstract: Non-autoregressive neural machine translation (NAT) generates each target word in parallel and has achieved promising inference acceleration. However, existing NAT models still have a big gap in translation quality compared to autoregressive neural machine translation models due to the multimodality problem: the target words may come from multiple feasible translations. To address this problem, we propose a novel NAT framework ReorderNAT which explicitly models the reordering information to guide the decoding of NAT. Specially, ReorderNAT utilizes deterministic and non-deterministic decoding strategies that leverage reordering information as a proxy for the final translation to encourage the decoder to choose words belonging to the same translation. Experimental results on various widely-used datasets show that our proposed model achieves better performance compared to most existing NAT models, and even achieves comparable translation quality as autoregressive translation models with a significant speedup.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948776
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers