02/02/2021

VRU Pose-SSD: Multiperson Pose Estimation For Automated Driving

Chandan Kumar, Jayanth Ramesh, Bodhisattwa Chakraborty, Renjith Raman, Christoph Weinrich, Anurag Mundhada, Arjun Jain, Fabian B. Flohr

Keywords:

Abstract: We present a fast and efficient approach for joint person detection and pose estimation optimized for automated driving (AD) in urban scenarios. We use a multitask weight sharing architecture to jointly train detection and pose estimation. This modular architecture allows us to accommodate different downstream tasks in the future. By systematic large-scale experiments on the Tsinghua-Daimler Urban Pose Dataset (TDUP), we obtain multiple models with varying accuracy-speed trade-offs. We then quantize and optimize our network for deployment and present a detailed analysis of the efficacy of the algorithm. We introduce a two-stage evaluation strategy, which is more suitable for AD and achieve a significant performance improvement in comparison to state-of-the-art approaches. Our optimized model runs at 52~fps on full HD images and still reaches a competitive performance of 32.25~LAMR. We are confident that our work serves as an enabler to tackle higher-level tasks like VRU intention estimation and gesture recognition, which rely on stable pose estimates and will play a crucial role in future AD systems.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38951111
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers