19/04/2021

Belief-based generation of argumentative claims

Milad Alshomary, Wei-Fan Chen, Timon Gurcke, Henning Wachsmuth

Keywords:

Abstract: In this work, we argue that augmenting argument generation technology with the ability to encode beliefs is of twofold. First, it gives more control on the generated arguments leading to better reach for audience. Second, it is one way of modeling the human process of synthesizing arguments. Therefore, we propose the task of belief-based claim generation, and study the research question of how to model and encode a user’s beliefs into a generated argumentative text. To this end, we model users’ beliefs via their stances on big issues, and extend state of the art text generation models with extra input reflecting user’s beliefs. Through an automatic evaluation we show empirical evidence of the applicability to encode beliefs into argumentative text. In our manual evaluation, we highlight that the low effectiveness of our approach stems from the noise produced by the automatic collection of bag-of-words, which was mitigated by removing this noise. The finding of this paper lays the ground work to further investigate the role of beliefs in generating better reaching arguments.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers