16/11/2020

Counterfactual Off-Policy Training for Neural Dialogue Generation

Qingfu Zhu, Wei-Nan Zhang, Ting Liu, William Yang Wang

Keywords: open-domain generation, data problem, training, counterfactual reasoning

Abstract: Open-domain dialogue generation suffers from the data insufficiency problem due to the vast size of potential responses. In this paper, we propose to explore potential responses by counterfactual reasoning. Given an observed response, the counterfactual reasoning model automatically infers the outcome of an alternative policy that could have been taken. The resulting counterfactual response synthesized in hindsight is of higher quality than the response synthesized from scratch. Training on the counterfactual responses under the adversarial learning framework helps to explore the high-reward area of the potential response space. An empirical study on the DailyDialog dataset shows that our approach significantly outperforms the HRED model as well as the conventional adversarial learning approaches.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers