17/08/2020

Local motion phases for learning multi-contact character movements

Sebastian Starke, Yiwei Zhao, Taku Komura, Kazi Zaman

Keywords: deep learning, character interactions, character animation, neural networks, character control, human motion

Abstract: Training a bipedal character to play basketball and interact with objects, or a quadruped character to move in various locomotion modes, are difficult tasks due to the fast and complex contacts happening during the motion. In this paper, we propose a novel framework to learn fast and dynamic character interactions that involve multiple contacts between the body and an object, another character and the environment, from a rich, unstructured motion capture database. We use one-on-one basketball play and character interactions with the environment as examples. To achieve this task, we propose a novel feature called local motion phase, that can help neural networks to learn asynchronous movements of each bone and its interaction with external objects such as a ball or an environment. We also propose a novel generative scheme to reproduce a wide variation of movements from abstract control signals given by a gamepad, which can be useful for changing the style of the motion under the same context. Our scheme is useful for animating contact-rich, complex interactions for real-time applications such as computer games.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3386569.3392450#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGGRAPH 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers