08/12/2020

Event-Guided Denoising for Multilingual Relation Learning

Amith Ananthram, Emily Allaway, Kathleen McKeown

Keywords:

Abstract: General purpose relation extraction has recently seen considerable gains in part due to a massively data-intensive distant supervision technique from Soares et al. (2019) that produces state-of-the-art results across many benchmarks. In this work, we present a methodology for collecting high quality training data for relation extraction from unlabeled text that achieves a near-recreation of their zero-shot and few-shot results at a fraction of the training cost. Our approach exploits the predictable distributional structure of date-marked news articles to build a denoised corpus – the extraction process filters out low quality examples. We show that a smaller multilingual encoder trained on this corpus performs comparably to the current state-of-the-art (when both receive little to no fine-tuning) on few-shot and standard relation benchmarks in English and Spanish despite using many fewer examples (50k vs. 300mil+).

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6353-event-guided-denoising-for-multilingual-relation-learning
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers