08/12/2020

MIDAS at SemEval-2020 Task 10: Emphasis Selection Using Label Distribution Learning and Contextual Embeddings

Sarthak Anand, Pradyumna Gupta, Hemant Yadav, Debanjan Mahata, Rakesh Gosangi, Haimin Zhang, Rajiv Ratn Shah

Keywords:

Abstract: This paper presents our submission to the SemEval 2020 - Task 10 on emphasis selection in written text. We approach this emphasis selection problem as a sequence labeling task where we represent the underlying text with various contextual embedding models. We also employ label distribution learning to account for annotator disagreements. We experiment with the choice of model architectures, trainability of layers, and different contextual embeddings. Our best performing architecture is an ensemble of different models, which achieved an overall matching score of 0.783, placing us 15th out of 31 participating teams. Lastly, we analyze the results in terms of parts of speech tags, sentence lengths, and word ordering.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6407-semeval-2020-task-10-emphasis-selection-for-written-text-in-visual-media
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers