08/12/2020

Joint Training for Learning Cross-lingual Embeddings with Sub-word Information without Parallel Corpora

Ali Hakimi Parizi, Paul Cook

Keywords:

Abstract: In this paper, we propose a novel method for learning cross-lingual word embeddings, that incorporates sub-word information during training, and is able to learn high-quality embeddings from modest amounts of monolingual data and a bilingual lexicon. This method could be particularly well-suited to learning cross-lingual embeddings for lower-resource, morphologically-rich languages, enabling knowledge to be transferred from rich- to lower-resource languages. We evaluate our proposed approach simulating lower-resource languages for bilingual lexicon induction, monolingual word similarity, and document classification. Our results indicate that incorporating sub-word information indeed leads to improvements, and in the case of document classification, performance better than, or on par with, strong benchmark approaches.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6417-joint-training-for-learning-cross-lingual-embeddings-with-sub-word-information-without-parallel-corpora
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers