08/07/2020

The Benefit of Being Non-Lazy in Probabilistic λ-calculus: Applicative Bisimulation is Fully Abstract for Non-Lazy Probabilistic Call-by-Name

Gianluca Curzi, Michele Pagani

Keywords: Full abstraction, Observational equivalence, Bisimilarity, Probabilistic lambda calculus, Separation

Abstract: We consider the probabilistic applicative bisimilarity (PAB) --- a coinductive relation comparing the applicative behaviour of probabilistic untyped λ-terms according to a specific operational semantics. This notion has been studied by Dal Lago et al. with respect to the two standard parameter passing policies, call-by-value (cbv) and call-by-name (cbn), using a lazy reduction strategy not reducing within the body of a function. In particular, PAB has been proven to be fully abstract with respect to the contextual equivalence in cbv [6] but not in lazy cbn [16]. We overcome this issue of cbn by relaxing the laziness constraint: we prove that PAB is fully abstract with respect to the standard head reduction contextual equivalence. Our proof is based on Leventis' Separation Theorem [19], using probabilistic Nakajima trees as a tree-like representation of the contextual equivalence classes. Finally, we prove also that the inequality full abstraction fails, showing that the probabilistic applicative similarity is strictly contained in the contextual preorder.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers