15/11/2020

Learning Graph-Based Heuristics for Pointer Analysis without Handcrafting Application-Specific Features

Minseok Jeon, Myungho Lee, Hakjoo Oh

Keywords: Context sensitivity, Pointer analysis, Data-driven static analysis, Heap abstraction, Machine learning for program analysis

Abstract: We present Graphick, a new technique for automatically learning graph-based heuristics for pointer analysis. Striking a balance between precision and scalability of pointer analysis requires designing good analysis heuristics. For example, because applying context sensitivity to all methods in a real-world program is impractical, pointer analysis typically uses a heuristic to employ context sensitivity only when it is necessary. Past research has shown that exploiting the program’s graph structure is a promising way of developing cost-effective analysis heuristics, promoting the recent trend of “graph-based heuristics” that work on the graph representations of programs obtained from a pre-analysis. Although promising, manually developing such heuristics remains challenging, requiring a great deal of expertise and laborious effort. In this paper, we aim to reduce this burden by learning graph-based heuristics automatically, in particular without hand-crafted application-specific features. To do so, we present a feature language to describe graph structures and an algorithm for learning analysis heuristics within the language. We implemented Graphick on top of Doop and used it to learn graph-based heuristics for object sensitivity and heap abstraction. The evaluation results show that our approach is general and can generate high-quality heuristics. For both instances, the learned heuristics are as competitive as the existing state-of-the-art heuristics designed manually by analysis experts.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at OOPSLA 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers