15/11/2020

Unifying Execution of Imperative Generators and Declarative Specifications

Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, Milos Gligoric

Keywords: Imperative generators, declarative specifications, Deuterium

Abstract: We present Deuterium—a framework for implementing Java methods as executable contracts. Deuterium introduces a novel, type-safe way to write method contracts entirely in Java, as a combination of imperative generators and declarative specifications (written in a first-order relational logic with transitive closure). Existing approaches are typically based on encoding both the specification and the program heap into a constraint language, and then using an off-the-shelf constraint solver—without any additional guidance—to search for a new program heap that satisfies the specification. Deuterium takes advantage of user-provided generators to prune the search space and reduce incurred overhead of constraint solving. Deuterium supports two ways of solving declarative constraints: SAT-based and search-based with in-memory state exploration. We evaluate our approach on a suite of data structures, established as a standard benchmark by prior work. Furthermore, we use random and sequence-based test generation to create a new benchmark designed to mimic realistic execution scenarios. Our results show that generators improve the performance of executable contracts and that in-memory state exploration is the algorithm of choice when heap sizes are small.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at OOPSLA 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers