14/07/2020

Bandwidth optimized parallel algorithms for sparse matrix-matrix multiplication using propagation blocking

Zhixiang Gu, Jose Moreira, David Edelsohn, Ariful Azad

Keywords: SpGEMM, parallel algorithm

Abstract: Sparse matrix-matrix multiplication (SpGEMM) is a widely used kernel in various graph, scientific computing and machine learning algorithms. It is well known that SpGEMM is a memory-bound operation, and its peak performance is expected to be bound by the memory bandwidth. Yet, existing algorithms fail to saturate the memory bandwidth, resulting in suboptimal performance under the Roofline model. In this paper, we characterize existing SpGEMM algorithms based on their memory access patterns and develop practical lower and upper bounds for SpGEMM performance. We then develop an SpGEMM algorithm based on the outer product. The newly developed algorithm called PB-SpGEMM saturates memory bandwidth by using the propagation blocking technique and by performing in-cache sorting and merging. For many practical matrices, PB-SpGEMM runs 20

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SPAA 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers