14/07/2020

Communication-optimal tilings for projective nested loops with arbitrary bounds

Grace Dinh, James Demmel

Keywords: optimal tilings, communication-avoiding algorithms, cache complexity

Abstract: Abstract Reducing communication - either between levels of a memory hierarchy or between processors over a network - is a key component of performance optimization (in both time and energy) for many nested loop problems, including dense linear algebra, particle interactions, and machine learning. Previous tiling based approaches for these problems have been used to find both lower bounds on the communication required to execute them and optimal rearrangements, or blockings, to attain such lower bounds. However, such general approaches have typically assumed the problem sizes are large, an assumption that is often not met in practice. In this paper, we provide an efficient way to both find and obtain, via an appropriate, efficiently constructible blocking, communication lower bounds and matching tilings which attain these lower bounds for nested loop programs with arbitrary loop bounds that operate on multidimensional arrays in the projective case, where the array indices are subsets of the loop indices. Our approach works on all such problems, regardless of dimensionality, size, memory access patterns, or number of arrays.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SPAA 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers