04/08/2021

Average-Case Communication Complexity of Statistical Problems

Cyrus Rashtchian, David Woodruff, Peng Ye, Hanlin Zhu

Keywords:

Abstract: We study statistical problems, such as planted clique, its variants, and sparse principal component analysis in the context of average-case communication complexity. Our motivation is to understand the statistical-computational trade-offs in streaming, sketching, and query-based models. Communication complexity is the main tool for proving lower bounds in these models, yet many prior results do not hold in an average-case setting. We provide a general reduction method that preserves the input distribution for problems involving a random graph or matrix with planted structure. Then, we derive two-party and multi-party communication lower bounds for detecting or finding planted cliques, bipartite cliques, and related problems. As a consequence, we obtain new bounds on the query complexity in the edge-probe, vector-matrix-vector, matrix-vector, linear sketching, and $\mathbb{F}_2$-sketching models. Many of these results are nearly tight, and we use our techniques to provide simple proofs of some known lower bounds for the edge-probe model.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers