22/09/2020

Adaptive pointwise-pairwise learning-to-rank for content-based personalized recommendation

Yagmur Gizem Cinar, Jean-Michel Renders

Keywords: recommender systems, learning-to-rank, news recommendation

Abstract: This paper extends the standard pointwise and pairwise paradigms for learning-to-rank in the context of personalized recommendation, by considering these two approaches as two extremes of a continuum of possible strategies. It basically consists of a surrogate loss that models how to select and combine these two approaches adaptively, depending on the context (query or user, pair of items, etc.). In other words, given a training instance, which is typically a triplet (a query/user and two items with different preferences or relevance grades), the strategy adaptively determines whether it is better to focus on the “most preferred” item (pointwise - positive instance), on the “less preferred” one (pointwise - negative instance) or on the pair (pairwise), or on anything else in between these 3 extreme alternatives. We formulate this adaptive strategy as minimizing a particular loss function that generalizes simultaneously the traditional pointwise and pairwise loss functions (negative log-likelihood) through a mixture coefficient. This coefficient is formulated as a learnable function of the features associated to the triplet. Experimental results on several real-world news recommendation datasets show clear improvements over several pointwise, pairwise, and listwise approaches.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at RECSYS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers