25/07/2020

Learning efficient representations of mouse movements to predict user attention

Ioannis Arapakis, Luis A. Leiva

Keywords: mouse cursor, sponsored search, online advertising, direct displays, user attention, transfer learning, neural networks

Abstract: Tracking mouse cursor movements can be used to predict user attention on heterogeneous page layouts like SERPs. So far, previous work has relied heavily on handcrafted features, which is a time-consuming approach that often requires domain expertise. We investigate different representations of mouse cursor movements, including time series, heatmaps, and trajectory-based images, to build and contrast both recurrent and convolutional neural networks that can predict user attention to direct displays, such as SERP advertisements. Our models are trained over raw mouse cursor data and achieve competitive performance. We conclude that neural network models should be adopted for downstream tasks involving mouse cursor movements, since they can provide an invaluable implicit feedback signal for re-ranking and evaluation.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401031#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers