25/07/2020

Query rewriting for voice shopping null queries

Iftah Gamzu, Marina Haikin, Nissim Halabi

Keywords: e-commerce search, voice assistant, null query, query rewriting, voice search

Abstract: Voice shopping using natural language introduces new challenges related to customer queries, like handling mispronounced, misexpressed, and misunderstood queries. Voice null queries, which result in no offers, have negative impact on customers shopping experience. Query rewriting (QR) attempts to automatically replace null queries with alternatives that lead to relevant results. We present a new approach for pre-retrieval QR of voice shopping null queries. Our proposed QR framework first generates alternative queries using a search index-based approach that targets different potential failures in voice queries. Then, a machine-learning component ranks these alternatives, and the original query is amended by the selected alternative. We provide an experimental evaluation of our approach based on data logs of a commercial voice assistant and an e-commerce website, demonstrating that it outperforms several baselines by more than $22%$. Our evaluation also highlights an interesting phenomenon, showing that web shopping null queries are considerably different, and apparently easier to fix, than voice queries. This further substantiates the use of specialized mechanisms for the voice domain. We believe that our proposed framework, mapping tail queries to head queries, is of independent interest since it can be extended and applied to other domains.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401052#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers