30/11/2020

Adaptive Spatio-Temporal Regularized Correlation Filters for UAV-based Tracking

Libin Xu, Qilei Li, Jun Jiang, Guofeng Zou, Zheng Liu, Mingliang Gao

Keywords:

Abstract: The advance of visual tracking has provided unmanned aerial vehicle (UAV) with the intriguing capability for various practical applications. With promising performance and efficiency, discriminative correlation filter (DCF)-based trackers have drawn great attention and undergone remarkable progress. However, the boundary effect and filter degradation remain two challenging problems. In this work, we propose a novel Adaptive Spatio-Temporal Regularized Correlation Filter (ASTR-CF) model to address these two problems. The ASTR-CF can optimize the spatial regularization weight and the temporal regularization weight simultaneously. Meanwhile, the proposed model can be effectively optimized based on the alternating direction method of multipliers (ADMM), where each subproblem has a closed-form solution. Experimental results on DTB70 and UAV123@10fps benchmarks have proven the superiority of our method compared to the state-of-the-art trackers in terms of both accuracy and computational speed.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_151.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers