23/08/2020

Personalized image retrieval with sparse graph representation learning

Xiaowei Jia, Handong Zhao, Zhe Lin, Ajinkya Kale, Vipin Kumar

Keywords: image retrieval, graph convolutional network, sparse graph

Abstract: Personalization is essential for enhancing the customer experience in retrieval tasks. In this paper, we develop a novel method CA-GCN for personalized image retrieval in the Adobe Stock image system. The proposed method CA-GCN leverages user behavior data in a Graph Convolutional Neural Network (GCN) model to learn user and image embeddings simultaneously. Standard GCN performs poorly on sparse user-image interaction graphs due to the limited knowledge gain from less representative neighbors. To address this challenge, we propose to augment the sparse user-image interaction data by considering the similarities among images. Specifically, we detect clusters of similar images and introduce a set of hidden super-nodes in the graph to represent clusters. We show that such an augmented graph structure can significantly improve the retrieval performance on real-world data collected from Adobe Stock service. In particular, when testing the proposed method on real users’ stock image retrieval sessions, we get promoted average click position from 70 to 51.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3394486.3403324#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at KDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 3:20