14/06/2020

Cross-View Correspondence Reasoning Based on Bipartite Graph Convolutional Network for Mammogram Mass Detection

Yuhang Liu, Fandong Zhang, Qianyi Zhang, Siwen Wang, Yizhou Wang, Yizhou Yu

Keywords: mammogram mass detection, bipartite graph convolutional network, reasoning, cross-view

Abstract: Mammogram mass detection is of great clinical significance due to its high proportion in breast cancers. The information from cross views (i.e., mediolateral oblique and cranio-caudal) is highly related and complementary, and is helpful to make comprehensive decisions. However, unlike radiologists who are able to recognize masses with reasoning ability in cross-view images, most existing methods lack the ability to reason under the guidance of domain knowledge, thus it limits the performance. In this paper, we introduce bipartite graph convolutional network to endow existing methods with cross-view reasoning ability of radiologists in mammogram mass detection. The bipartite node sets are constructed by cross-view images respectively to represent relatively consistent regions in breasts, while the bipartite edge learns to model both inherent cross-view geometric constraints and appearance similarities between correspondences. Based on the bipartite graph, the information propagates methodically through correspondences and enables spatial visual features equipped with customized cross-view reasoning ability. Experimental results on DDSM dataset demonstrate that the proposed algorithm achieves state-of-the-art performance. Besides, visual analysis shows the model has a clear physical meaning, which is helpful for radiologists in clinical interpretation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers