14/06/2020

Uncertainty-Aware Score Distribution Learning for Action Quality Assessment

Yansong Tang, Zanlin Ni, Jiahuan Zhou, Danyang Zhang, Jiwen Lu, Ying Wu, Jie Zhou

Keywords: action quality assessment, uncertainty-aware score distribution learning, multi-path model

Abstract: Assessing action quality from videos has attracted growing attention in recent years. Most existing approaches usually tackle this problem based on regression algorithms, which ignore the intrinsic ambiguity in the score labels caused by multiple judges or their subjective appraisals. To address this issue, we propose an uncertainty-aware score distribution learning (USDL) approach for action quality assessment (AQA). Specifically, we regard an action as an instance associated with a score distribution, which describes the probability of different evaluated scores. Moreover, under the circumstance where finer-grained score labels are available (e.g., difficulty degree of an action or multiple scores from different judges), we further devise a multi-path uncertainty-aware score distribution learning (MUSDL) method to explore the disentangled components of a score. In order to demonstrate the effectiveness of our proposed methods, We conduct experiments on two AQA datasets containing various Olympic actions. Our approaches set new state-of-the-arts under the Spearman's Rank Correlation (i.e., 0.8102 on AQA-7 and 0.9273 on MTL-AQA).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers