14/06/2020

Understanding Human Hands in Contact at Internet Scale

Dandan Shan, Jiaqi Geng, Michelle Shu, David F. Fouhey

Keywords: hand understanding, human object interaction, interaction detection, hand detection, video dataset, affordance, hand mesh prediction, hand reconstruction

Abstract: Hands are the central means by which humans manipulate their world and being able to reliably extract hand state information from Internet videos of humans engaged in their hands has the potential to pave the way to systems that can learn from petabytes of video data. This paper proposes steps towards this by inferring a rich representation of hands engaged in interaction method that includes: hand location, side, contact state, and a box around the object in contact. To support this effort, we gather a large-scale dataset of hands in contact with objects consisting of 131 days of footage as well as a 100K annotated hand-contact video frame dataset. The learned model on this dataset can serve as a foundation for hand-contact understanding in videos. We quantitatively evaluate it both on its own and in service of predicting and learning from 3D meshes of human hands.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers