14/06/2020

Dynamic Fluid Surface Reconstruction Using Deep Neural Network

Simron Thapa, Nianyi Li, Jinwei Ye

Keywords: dynamic fluid surface, 3d reconstruction, deep neural network, encoder-decoder network, recurrent network

Abstract: Recovering the dynamic fluid surface is a long-standing challenging problem in computer vision. Most existing image-based methods require multiple views or a dedicated imaging system. Here we present a learning-based single-image approach for 3D fluid surface reconstruction. Specifically, we design a deep neural network that estimates the depth and normal maps of a fluid surface by analyzing the refractive distortion of a reference background image. Due to the dynamic nature of fluid surfaces, our network uses recurrent layers that carry temporal information from previous frames to achieve spatio-temporally consistent reconstruction given a video input. Due to the lack of fluid data, we synthesize a large fluid dataset using physics-based fluid modeling and rendering techniques for network training and validation. Through experiments on simulated and real captured fluid images, we demonstrate that our proposed deep neural network trained on our fluid dataset can recover dynamic 3D fluid surfaces with high accuracy.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers