14/06/2020

Vision-Language Navigation With Self-Supervised Auxiliary Reasoning Tasks

Fengda Zhu, Yi Zhu, Xiaojun Chang, Xiaodan Liang

Keywords: computer vision, vision language navigation, reinforcement learning

Abstract: Vision-Language Navigation (VLN) is a task where an agent learns to navigate following a natural language instruction. The key to this task is to perceive both the visual scene and natural language sequentially. Conventional approaches fully exploit vision and language features in cross-modal grounding. However, the VLN task remains challenging, since previous works have implicitly neglected the rich semantic information contained in environments (such as navigation graphs or sub-trajectory semantics). In this paper, we introduce Auxiliary Reasoning Navigation (AuxRN), a framework with four self-supervised auxiliary reasoning tasks to exploit the additional training signals derived from these semantic information. The auxiliary tasks have four reasoning objectives: explaining the previous actions, evaluating the trajectory consistency, estimating the progress and predict the next direction. As a result, these additional training signals help the agent to acquire knowledge of semantic representations in order to reason about its activities and build a thorough perception of environments. Our experiments demonstrate that auxiliary reasoning tasks improve both the performance of the main task and the model generalizability by a large margin. We further demonstrate empirically that an agent trained with self-supervised auxiliary reasoning tasks substantially outperforms the previous state-of-the-art method, being the best existing approach on the standard benchmark.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers