14/06/2020

SegGCN: Efficient 3D Point Cloud Segmentation With Fuzzy Spherical Kernel

Huan Lei, Naveed Akhtar, Ajmal Mian

Keywords: fuzzy kernel, 3d kernel, 3d point clouds, semantic segmentation, graph convolutional network, large scale, sparse points

Abstract: Fuzzy clustering is known to perform well in real-world applications. Inspired by this observation, we incorporate a fuzzy mechanism into discrete convolutional kernels for 3D point clouds as our first major contribution. The proposed fuzzy kernel is defined over a spherical volume that uses discrete bins. Discrete volumetric division can normally make a kernel vulnerable to boundary effects during learning as well as point density during inference. However, the proposed kernel remains robust to boundary conditions and point density due to the fuzzy mechanism. Our second major contribution comes as the proposal of an efficient graph convolutional network, SegGCN for segmenting point clouds. The proposed network exploits ResNet like blocks in the encoder and 1 1 convolutions in the decoder. SegGCN capitalizes on the separable convolution operation of the proposed fuzzy kernel for efficiency. We establish the effectiveness of the SegGCN with the proposed kernel on the challenging S3DIS and ScanNet real-world datasets. Our experiments demonstrate that the proposed network can segment over one million points per second with highly competitive performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers