14/06/2020

DeepFLASH: An Efficient Network for Learning-Based Medical Image Registration

Jian Wang, Miaomiao Zhang

Keywords: deformable image registration, diffeomorphisms, deep learning, low dimensional bandlimited space.

Abstract: This paper presents DeepFLASH, a novel network with efficient training and inference for learning-based medical image registration. In contrast to existing approaches that learn spatial transformations from training data in the high dimensional imaging space, we develop a new registration network entirely in a low dimensional bandlimited space. This dramatically reduces the computational cost and memory footprint of an expensive training and inference. To achieve this goal, we first introduce complex-valued operations and representations of neural architectures that provide key components for learning-based registration models. We then construct an explicit loss function of transformation fields fully characterized in a bandlimited space with much fewer parameterizations. Experimental results show that our method is significantly faster than the state-of-the-art deep learning based image registration methods, while producing equally accurate alignment. We demonstrate our algorithm in two different applications of image registration: 2D synthetic data and 3D real brain magnetic resonance (MR) images.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers