14/06/2020

Online Depth Learning Against Forgetting in Monocular Videos

Zhenyu Zhang, Stéphane Lathuilière, Elisa Ricci, Nicu Sebe, Yan Yan, Jian Yang

Keywords: depth estimation, online adaptation, domain adaptation, meta-learning, online learning

Abstract: Online depth learning is the problem of consistently adapting a depth estimation model to handle a continuously changing environment. This problem is challenging due to the network easily overfits on the current environment and forgets its past experiences. To address such problem, this paper presents a novel Learning to Prevent Forgetting (LPF) method for online mono-depth adaptation to new target domains in unsupervised manner. Instead of updating the universal parameters, LPF learns adapter modules to efficiently adjust the feature representation and distribution without losing the pre-learned knowledge in online condition. Specifically, to adapt temporal-continuous depth patterns in videos, we introduce a novel meta-learning approach to learn adapter modules by combining online adaptation process into the learning objective. To further avoid overfitting, we propose a novel temporal-consistent regularization to harmonize the gradient descent procedure at each online learning step. Extensive evaluations on real-world datasets demonstrate that the proposed method, with very limited parameters, significantly improves the estimation quality.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers