14/06/2020

ARShadowGAN: Shadow Generative Adversarial Network for Augmented Reality in Single Light Scenes

Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, Chunxia Xiao

Keywords: shadow generation, augmented reality, generative adversarial network

Abstract: Generating virtual object shadows consistent with the real-world environment shading effects is important but challenging in computer vision and augmented reality applications. To address this problem, we propose an end-to-end Generative Adversarial Network for shadow generation named ARShadowGAN for augmented reality in single light scenes. Our ARShadowGAN makes full use of attention mechanism and is able to directly model the mapping relation between the virtual object shadow and the real-world environment without any explicit estimation of the illumination and 3D geometric information. In addition, we collect an image set which provides rich clues for shadow generation and construct a dataset for training and evaluating our proposed ARShadowGAN. The extensive experimental results show that our proposed ARShadowGAN is capable of directly generating plausible virtual object shadows in single light scenes. Our source code is available at https://github.com/ldq9526/ARShadowGAN.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers