14/06/2020

GLU-Net: Global-Local Universal Network for Dense Flow and Correspondences

Prune Truong, Martin Danelljan, Radu Timofte

Keywords: matching, correspondences, optical flow, geometric matching, semantic matching, universal

Abstract: Establishing dense correspondences between a pair of images is an important and general problem, covering geometric matching, optical flow and semantic correspondences. While these applications share fundamental challenges, such as large displacements, pixel-accuracy, and appearance changes, they are currently addressed with specialized network architectures, designed for only one particular task. This severely limits the generalization capabilities of such networks to new scenarios, where e.g. robustness to larger displacements or higher accuracy is required. In this work, we propose a universal network architecture that is directly applicable to all the aforementioned dense correspondence problems. We achieve both high accuracy and robustness to large displacements by investigating the combined use of global and local correlation layers. We further propose an adaptive resolution strategy, allowing our network to operate on virtually any input image resolution. The proposed GLU-Net achieves state-of-the-art performance for geometric and semantic matching as well as optical flow, when using the same network and weights. Code and trained models are available at https://github.com/PruneTruong/GLU-Net.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers