14/06/2020

Deep Learning for Handling Kernel/model Uncertainty in Image Deconvolution

Yuesong Nan, Hui Ji

Keywords: image deblurring, robust deblurring, error-in-variable model, deep learning, blur kernel correction, image restoration, image processing, low level vision

Abstract: Most existing non-blind image deconvolution methods assume that the given blurring kernel is error-free. In practice, blurring kernel often is estimated via some blind deblurring algorithm which is not exactly the truth. Also, the convolution model is only an approximation to practical blurring effect. It is known that non-blind deconvolution is susceptible to such a kernel/model error. Based on an error-in-variable (EIV) model of image blurring that takes kernel error into consideration, this paper presents a deep learning method for deconvolution, which unrolls a total-least-squares (TLS) estimator whose relating priors are learned by neural networks (NNs). The experiments showed that the proposed method is robust to kernel/model error. It noticeably outperformed existing solutions when deblurring images using noisy kernels, e.g. the ones estimated from existing blind motion deblurring methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers