14/06/2020

MetaIQA: Deep Meta-Learning for No-Reference Image Quality Assessment

Hancheng Zhu, Leida Li, Jinjian Wu, Weisheng Dong, Guangming Shi

Keywords: image quality assessment, convolutional neural networks, gradient optimization-based deep meta-learning, highly generalizable

Abstract: Recently, increasing interest has been drawn in exploiting deep convolutional neural networks (DCNNs) for no-reference image quality assessment (NR-IQA). Despite of the notable success achieved, there is a broad consensus that training DCNNs heavily relies on massive annotated data. Unfortunately, IQA is a typical small sample problem. Therefore, most of the existing DCNN-based IQA metrics operate based on pre-trained networks. However, these pre-trained networks are not designed for IQA task, leading to generalization problem when evaluating different types of distortions. With this motivation, this paper presents a no-reference IQA metric based on deep meta-learning. The underlying idea is to learn the meta-knowledge shared by human when evaluating the quality of images with various distortions, which can then be adapted to unknown distortions easily. Specifically, we first collect a number of NR-IQA tasks for different distortions. Then meta-learning is adopted to learn the prior knowledge shared by diversified distortions. Finally, the quality prior model is fine-tuned on a target NR-IQA task for quickly obtaining the quality model. Extensive experiments demonstrate that the proposed metric outperforms the state-of-the-arts by a large margin. Furthermore, the meta-model learned from synthetic distortions can also be easily generalized to authentic distortions, which is highly desired in real-world applications of IQA metrics.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers