14/06/2020

RankMI: A Mutual Information Maximizing Ranking Loss

Mete Kemertas, Leila Pishdad, Konstantinos G. Derpanis, Afsaneh Fazly

Keywords: metric learning, information retrieval, image retrieval, information theory, deep representation learning

Abstract: We introduce an information-theoretic loss function, RankMI, and an associated training algorithm for deep representation learning for image retrieval. Our proposed framework consists of alternating updates to a network that estimates the divergence between distance distributions of matching and non-matching pairs of learned embeddings, and an embedding network that maximizes this estimate via sampled negatives. In addition, under this information-theoretic lens we draw connections between RankMI and commonly-used ranking losses, e.g., triplet loss. We extensively evaluate RankMI on several standard image retrieval datasets, namely, CUB-200-2011, CARS-196, and Stanford Online Products. Our method achieves competitive results or significant improvements over previous reported results on all datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers