11/08/2020

PCF: Provably resilient flexible routing

Chuan Jiang, Sanjay Rao, Mohit Tawarmalani

Keywords: network optimization, network resilience

Abstract: Recently, traffic engineering mechanisms have been developed that guarantee that a network (cloud provider WAN, or ISP) does not experience congestion under failures. In this paper, we show that existing congestion-free mechanisms, notably FFC, achieve performance far short of the network’s intrinsic capability. We propose PCF, a set of novel congestion-free mechanisms to bridge this gap. PCF achieves these goals by better modeling network structure, and by carefully enhancing the flexibility of network response while ensuring that the performance under failures can be tractably modeled. All of PCF’s schemes involve relatively light-weight operations on failures, and many of them can be realized using a local proportional routing scheme similar to FFC. We show PCF’s effectiveness through formal theoretical results, and empirical experiments over 21 Internet topologies. PCF’s schemes provably out-perform FFC, and in practice, can sustain higher throughput than FFC by a factor of 1.11X to 1.5X on average across the topologies, while providing a benefit of 2.6X in some cases.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGCOMM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers