11/08/2020

Contention-aware performance prediction for virtualized network functions

Antonis Manousis, Rahul Anand Sharma, Vyas Sekar, Justine Sherry

Keywords: Network Functions Performance, Packet Processing Software

Abstract: At the core of Network Functions Virtualization lie Network Functions (NFs) that run co-resident on the same server, contend over its hardware resources and, thus, might suffer from reduced performance relative to running alone on the same hardware. Therefore, to efficiently manage resources and meet performance SLAs, NFV orchestrators need mechanisms to predict contention-induced performance degradation. In this work, we find that prior performance prediction frameworks suffer from poor accuracy on modern architectures and NFs because they treat memory as a monolithic whole. In addition, we show that, in practice, there exist multiple components of the memory subsystem that can separately induce contention. By precisely characterizing (1) the pressure each NF applies on the server’s shared hardware resources (contentiousness) and (2) how susceptible each NF is to performance drop due to competing contentiousness (sensitivity), we develop SLOMO, a multivariable performance prediction framework for Network Functions. We show that relative to prior work SLOMO reduces prediction error by 2-5x and enables 6-14

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGCOMM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers