11/08/2020

Aeolus: A building block for proactive transport in datacenters

Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai Chen, Kun Tan, Yi Wang

Keywords: Data Center Networks, Selective Dropping, First RTT, Proactive Transport

Abstract: As datacenter network bandwidth keeps growing, proactive transport becomes attractive, where bandwidth is proactively allocated as "credits" to senders who then can send "scheduled packets" at a right rate to ensure high link utilization, low latency, and zero packet loss. While promising, a fundamental challenge is that proactive transport requires at least one-RTT for credits to be computed and delivered. In this paper, we show such one-RTT "pre-credit" phase could carry a substantial amount of flows at high link-speeds, but none of existing proactive solutions treats it appropriately. We present Aeolus, a solution focusing on "pre-credit" packet transmission as a building block for proactive transports. Aeolus contains unconventional design principles such as scheduled-packet-first (SPF) that de-prioritizes the first-RTT packets, instead of prioritizing them as prior work. It further exploits the preserved, deterministic nature of proactive transport as a means to recover lost first-RTT packets efficiently. We have integrated Aeolus into ExpressPass[14], NDP[18] and Homa[29], and shown, through both implementation and simulations, that the Aeolus-enhanced solutions deliver signiicant performance or deployability advantages. For example, it improves the average FCT of ExpressPass by 56

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGCOMM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers