11/08/2020

Classic meets modern: A pragmatic learning-based congestion control for the internet

Soheil Abbasloo, Chen-Yu Yen, H. Jonathan Chao

Keywords: Congestion Control, TCP, Deep Reinforcement Learning

Abstract: These days, taking the revolutionary approach of using clean-slate learning-based designs to completely replace the classic congestion control schemes for the Internet is gaining popularity. However, we argue that current clean-slate learning-based techniques bring practical issues and concerns such as overhead, convergence issues, and low performance over unseen network conditions to the table. To address these issues, we take a pragmatic and evolutionary approach combining classic congestion control strategies and advanced modern deep reinforcement learning (DRL) techniques and introduce a novel hybrid congestion control for the Internet named Orca1. Through extensive experiments done over global testbeds on the Internet and various locally emulated network conditions, we demonstrate that Orca is adaptive and achieves consistent high performance in different network conditions, while it can significantly alleviate the issues and problems of its clean-slate learning-based counterparts.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGCOMM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers