03/08/2020

An Interpretable and Sample Efficient Deep Kernel for Gaussian Process

Yijue Dai, Tianjian Zhang, Zhidi Lin, Feng Yin, Sergios Theodoridis, Shuguang Cui

Keywords:

Abstract: We propose a novel Gaussian process kernel that takes advantage of a deep neural network (DNN) structure but retains good interpretability. The resulting kernel is capable of addressing four major issues of the previous works of similar art, i.e., the optimality, explainability, model complexity, and sample efficiency. Our kernel design procedure comprises three steps: (1) Derivation of an optimal kernel with a non-stationary dot product structure that minimizes the prediction/test mean-squared-error (MSE); (2) Decomposition of this optimal kernel as a linear combination of shallow DNN subnetworks with the aid of multi-way feature interaction detection; (3) Updating the hyper-parameters of the subnetworks via an alternating rationale until convergence. The designed kernel does not sacrifice interpretability for optimality. On the contrary, each subnetwork explicitly demonstrates the interaction of a set of features in a transformation function, leading to a solid path toward explainable kernel learning. We test the proposed kernel with both synthesized and real-world data sets, and the proposed kernel is superior to its competitors in terms of prediction performance in most cases. Moreover, it tends to maintain the prediction performance and be robust to data over-fitting issue, when reducing the number of samples.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers